
Enabling One-sided Communication Semantics on
ARM

Pavel Shamis
ARM Research

Austin, TX
pavel.shamis@arm.com

M. Graham Lopez
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN

lopezmg@ornl.gov

Gilad Shainer
Mellanox Technologies
shainer@mellanox.com

Abstract—In this paper, we present our work to enable
optimized one-sided communication operations on the ARM
v8 architecture using a high-performance InfiniBand network
interconnect, as well as an evaluation of our implementation.
For this study, we started with an OpenSHMEM implementation
based on Open MPI/SHMEM, and combined it with the UCX
framework and the XPMEM kernel extension for shared memory
communication. UCX is a unified communication abstraction
that provides high-performance communication services over a
variety of network interconnects and shared memory technolo-
gies. The UCX, XPMEM, and OpenSHMEM components were
specially ported for this work in order to enable efficient access
to shared memory and RDMA network capabilities on ARM.
To the best of our knowledge, this is the first investigation of
one-sided communication semantics and OpenSHMEM on the
ARM architecture combined with a high-performance InfiniBand
network and XPMEM shared memory transport.

I. INTRODUCTION

One-sided communication is a class of semantics where the
initiator instantiates a communication request that can be com-
pleted without explicit involvement of the processing element
on the target side. Remote memory put (write), get (read), and
atomic updates are examples of such operations. Conversely,
two-sided communication semantics requires explicit involve-
ment of the initiator and target sides. Typical examples for
this class of semantics are send-receive operations where the
target must explicitly invoke the receive operation for send to
be completed.

SHMEM is a library-based implementation of a partitioned
global address space (PGAS) programming model that is built
on one-sided communication semantics and a core set of
collective, atomic, and synchronization operations. Although

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

This paper is authored by an employee(s) of the United States Government
and is in the public domain. Non-exclusive copying or redistribution is
allowed, provided that the article citation is given and the authors and agency
are clearly identified as its source.

there have been many high-quality, proprietary implementa-
tions of the SHMEM API, OpenSHMEM [1], [2] is an open
standard that attempts to normalize the syntax and features
of SHMEM for consistency across platforms and implementa-
tions. The 1.0 version of the OpenSHMEM specification is
based on SGI’s SHMEM API, and with input from other
industrial partners, academia, and national laboratories the
specification is about to release v1.4 with further regularization
and new features. In addition to an open standard, OpenSH-
MEM provides an open-source reference implementation [3]
of the SHMEM API for research purposes.

For this work, we chose to use the OpenSHMEM library as
a representative of one-sided communications due to its being
relatively lightweight and simple; the same work is readily
transferable to MPI and other one-sided implementations as
well. The OpenSHMEM reference implementation is designed
for maximum portability to enable evaluation and research
on the widest variety of platforms. The original version was
based on the GASNet [4] communication middleware layer,
and later it was redesigned [5] to the Universal Common
Communication Substrate (UCCS) [6], [7] low-level network
library. The successor to UCCS is named UCX [8], and efforts
are underway to further improve the performance of various
communication libraries using this next-generation network
layer. For instance, there is an OpenSHMEM implementation
built on UCX that is now included as part of the Open MPI [9]
software distribution. For the remainder of this paper, we will
refer to the OpenSHMEM implementation included with Open
MPI as OSHMEM. With the increased support afforded by the
Open MPI project and partnerships with industry, as well as
the wider portability and increased performance afforded by
the adoption of UCX, OSHMEM is beginning to see greater
success on a wider variety of platforms.

We present a preliminary evaluation of one-sided commu-
nication on the ARM v8 architecture using an InfiniBand (IB)
network interconnect. In order to enable this evaluation we
ported the UCX framework and XPMEM kernel module to
support the ARM v8 architecture. Moreover, we developed
an ARM-optimized version of OpenSHMEM point-to-point
synchronization routines by leveraging the advanced capa-
bilities of the ARM instruction set architecture (ISA). To
the best of our knowledge, this is the first research work



that enables and demonstrates advanced shared memory and
RDMA capabilities on the ARM platform.

In this paper, we give a brief overview of the UCX com-
munication layer, the OpenSHMEM programming model, and
related work in these areas in section II. Section III goes
into the main details about UCX, XPMEM, and how they
were integrated with OSHMEM. We present the results of our
evaluations in section IV along with a comparison between the
MLX5 and Verbs capabilities in the UCX InfiniBand trans-
port layer and the effects of using ARM ISA optimizations
for OpenSHMEM point-to-point synchronization operations.
Finally, we provide a brief discussion and some concluding
remarks in section V.

II. BACKGROUND AND RELATED WORK

Once the OpenSHMEM specification was started, a ref-
erence library implementation [10] was provided by a col-
laboration between Oak Ridge National Laboratory and Uni-
versity of Houston. Soon after, a variety of research and
vendor implementations emerged. Research driven implemen-
tations include Ohio State University’s version [11] based on
the MVAPICH-X runtime, Sandia National Laboratory open
source implementation for the Portals [12] network abstraction
and libfabrics [13] interface, and GSHMEM [14] from the
University of Florida based on GASNet [4]. Vendor oriented
implementations that are closely related to specific network
hardware include SGI, Cray and HP SHMEM, TSHMEM
[15] developed by University of Florida for Tilera many-core
processors, and Mellanox ScalableSHMEM [16]. Several of
these implementations include various extensions that are not
defined in the OpenSHMEM specification.

More recently, some OpenSHMEM implementations have
been moving towards using the newly developed Unified
Communication X (UCX) [5] high-performance network mid-
dleware layer, which is described in more detail in section
III-A. Other networking middleware layers and libraries can
be compared and contrasted with UCX in a few different
categories. Established projects like GASNet [4] and ARMCI
[17] tend to be more specialized for uses like global address
space and distributed array models. CCI [18] is a generic inter-
face aiming to provide a socket-like replacement for RDMA
interconnects. Vendor-supported examples include Intel’s PSM
[19], Cray’s uGNI and DMAPP [20] interfaces, but these are
hardware and platform-specific. IBM’s PAMI[21] abstraction
targets OpenPOWER architectures while supporting multiple
interconnect technologies. Another high-level abstraction is
Portals [12], being focused on researching network architec-
ture building blocks rather than optimizations for low-level
hardware support. Most recently, the Portals specification was
embraced by BXI [22], which realizes the Portal’s architecture
in hardware. In addition, there are several low-level interfaces
to various specific network hardware technologies. These
include Verbs [23] and libfabrics [13] libaries developed by
Openfabrics Alliance, and the previously mentioned UCCS.
While both UCX and libfabrics provide support for multiple
network technologies, in this work we focus on enabling

support for new platforms within the emerging UCX frame-
work. UCX was appropriate for this task because it provides
helpful features such as native support for the Mellanox MLX5
architecture and a choice between using a high-level API for
abstraction and ease of use, or access to the lower-level API
for performance optimizations. In UCX, these APIs are unified
under a common implementation and apply to the variety
of platforms mentioned above. The implementation is based
on the concept of Modular Component Architecture (MCA)
[24], which simplifies the framework portability by leveraging
already existing components.

Besides internode network communication services, there
are also several alternatives for intranode shared-memory ac-
cess. Cross-partition memory (XPMEM) is a shared-memory
technology that was originally developed by SGI and later
ported to Cray [25], and now there is experimental sup-
port for newer kernels (>=3.12) maintained by Los Alamos
National Laboratory [26]. It is a kernel module and user
level library that supports memory registration and cross-
process mapping of user-allocated memory. It has been used
in high-performance communications implementations such as
the “vader" transport in Open MPI [27]. Related kernel-level
shared-memory technologies that are also supported in UCX
but not evaluated in this paper include the linux Cross-Memory
Attach (CMA) [28] and Kernel Nemesis (KNEM) [29]. Be-
sides these customized kernel module implementations, native
Linux shared-memory access can also be achieved through
the natively-supported SysV and Posix APIs. Finally, LiMIC
[30] is a specialized shared-memory mechanism used in the
MVAPICH runtime to accelerate shared memory operations.

III. DESIGN

In this section we provide an overview of the software stack
used for the evaluation report in this paper, as well as ARM
specific enhancements for the relevant software components.
We will briefly describe UCX and XPMEM, and how they
were integrated into OSHMEM.

A. UCX API

UCX is a collaboration between industry, national labs and
academia that consolidates technologies from Mellanox MXM
[31], ORNL’s UCCS [6], [7] and IBM Parallel Active Message
Interface (PAMI) into a unified open source framework. It is
cross-platform and supports network technologies like Infini-
Band, Cray Gemini/Aries, and shared memory architectures
for x86-64, POWER, ARM, and GPUs. The UCX API exposes
both high- and low-level interfaces to satisfy both better ac-
cessibility for exploratory programming model implementation
and access to hardware optimizations for performance tuning.
To satisfy this design goal, UCX is actually a unification of
three separate APIs: UCP for high-level usability, UCT for
low-level optimizations, and UCS as a utility glue layer.

• UCT (for “transports”) exposes basic network operations
supported by networking and shared-memory hardware.
It provides reliable and out of order delivery for various



protocols with its main functionality consisting of the
setup and instantiation of communication operations.

• UCP (for “protocols”) uses UCT to construct protocols
commonly found in applications. It provides several com-
munication paradigms such as multi-rail services, device
selection protocols, pending queue implementation, tag-
matching, and software atomics.

• UCS (for “services”) is the infrastructure for component
based programming, memory management, and system
utilities when using UCT and UCP. This infrastructure
includes various platform abstractions, data structures,
and debugging facilities.

The ARM enablement work in UCX primarily focused on
the UCS and UCT layers. The UCS layer was extended to
support native ARM instructions for various memory and
instruction barriers, access to the high-resolution clock, atomic
operations, and optimized bit manipulation operations. In the
UCT layer, we added a few enhancements related to the
cache-line alignment and false sharing avoidance in the shared
memory transports.

In terms of InfiniBand interconnects, UCX supports two
major types of communication conduits: Verbs and MLX5.
The Verbs conduit follows the traditional path for RDMA
interconnects and leverages the Verbs user-level driver for
triggering communication directives. The MLX5 conduit uses
the highly optimized UCX built-in driver for the Mellanox
InfiniBand ConnectX-4, 5, and 6 architecture. The primary
goal of the MLX5 conduit is to optimize application communi-
cation paths for latency and message-rate-sensitive operations.
The MLX5 conduit was extended to use ARM NEON SIMD
extensions (vqtbl1q_u8 intrinsics) for the following opera-
tions: InfiniBand inline memory copy, RDMA work request
initialization, and InfiniBand control segment initialization.
The shared memory communication across processes sharing
the same memory space is realized using the XPMEM conduit,
which provides high-performance directives for cross-process
memory access, including atomic operations. As a result, we
were able to enable efficient InfiniBand and shared-memory
support for ARM v8 platforms.

All the above enchancements for UCX are open source and
can be found in the UCX repository [32].

B. XPMEM

Cross-partition memory (XPMEM) [26], [25] is a non-
standard Linux kernel module providing shared-memory ser-
vices similarly to Linux CMA or mmap() functionality. These
services allow an active process to interact with the virtual
memory address space of a separate active process using
read, write, or combined read/write access. This happens via
exposed API calls from XPMEM, where a process must first
export a region of its own virtual address space at which point
other processes can attach to it. Once the remote memory
is mapped into a process’s virtual address space, it is used
via direct loads and stores, allowing higher-level programming
models to execute single-copy intranode communications.

However, there are some semantic differences between XP-
MEM and other shared memory approaches such as mmap().
XPMEM provides the ability to pre-export as-yet unallocated
regions of the virtual address space. In such a case, valid
addresses (allocated) are mapped between processes on de-
mand, and invalid addresses result in a SIGSEGV in the same
way as unallocated memory local to the process. In addition,
XPMEM does not enforce any particular memory allocation
methodology, and therefore it can be used for sharing global,
static, heap, and stack memory regions. This capability is
especially useful for OpenSHMEM programming that exposes
communication semantics enabling remote memory access to
global and static memories. Finally, there are two primary
differences between XPMEM and other memory sharing ap-
proaches such as Linux CMA and KNEM. First, both CMA
and KNEM invoke system calls in their communication paths,
while XPMEM avoids expensive system overheads associated
with the system calls and directly leverages load-and-store se-
mantics. Second, since XPMEM maps the memory across the
processes, the memory can be accessed using native (in terms
of the underlying architecture) atomic directives. Contrary to
this, CMA and KNEM do not provide any support for atomic
operations, which is an important class of operations in the
OpenSHMEM programming model.

The open source implementation [26] of the XPMEM kernel
module originally ignored Linux defined abstractions and
directly referenced x86_64 architecture-specific code, which is
related to the memory subsystem and huge-pages implementa-
tions in the Linux kernel. As part of this work, we addressed
this constraint and implementation relevant modifications to
the XPMEM kernel module for the ARM v8 architecture.
Since these changes are mostly related to the kernel-module
implementation mechanics, the details of implementation are
out of scope of this paper and can be found in the open source
version of XPMEM [26].

C. Open MPI SHMEM Communication Layer

Open MPI [9] is a popular open source implementation of
the MPI specification. The Open MPI software architecture
takes its roots in the concept of Modular Component Architec-
tures (MCA) [33], which provides a very efficient framework
for software capability extensions. Using this framework, the
Open MPI community extended the project to support the
OpenSHMEM specification. The OpenSHMEM implementa-
tion within Open MPI is called OSHMEM. It is important to
note that OSHMEM is not implemented on top of the MPI
communication semantics but directly accesses the hardware
through the intermediate software layer called SHMEM Point-
to-Point Management Layer (SPML). For integration with
UCX, OSHMEM implements UCX SPML that maps Open-
SHMEM directives to the UCX API. Figure 1 summarizes
this OpenSHMEM stack for ARM. OSHMEM put, get, and
atomic routines are translated to UCP calls through the UCX
SPML layer. UCP dispatches the call based on the requested
destination, type of memory (global, static, symmetric), and
the underlying transport capabilities. In the context of our



OpenSHMEM	Applica/on	

OSHMEM	

UCX	SPML	

U
CX

		
Fr
am

ew
or
k	 UCP	

MLX5	UCT	 Verbs	UCT	 XPMEM	UCT	

Fig. 1. OpenSHMEM software stack on ARM

work, the request can be dispatched to InfiniBand-MLX5,
InfiniBand Verbs reliable connection (RC), or XPMEM UCT.
Once UCT receives the message, it forms the request and
passes the data to the underlying driver or hardware. In the
case of Mellanox MLX5 devices, UCT triggers the PCIe
doorbell which pushes the request down to the hardware. For
OpenSHMEM collective operations, OSHMEM leverages the
MPI collectives interface.

From the beginning, Open MPI was designed to be an
architecture-agnostic, platform-independent MPI implementa-
tion. OSHMEM inherits this characteristic and therefore it
supports the ARM architecture out of the box.

In the context of this work, we decided to focus on potential
enhancements of the OSHMEM layer that aim to improve
energy efficiency without sacrificing performance. Specifically,
we looked at point-to-point synchronization routines in the
OpenSHMEM specification. The shmem_<datatype>_wait()
routines accept two arguments: a pointer to a variable that the
user expects to be updated and a compare-value of the same
data type. The function blocks until some other processing
element changes the value of the pointer to a value that is dif-
ferent from compare-value. shmem_<datatype>_wait_until()
routines expose similar functionality, but in addition, the user
can specify the type of compare operation (equal, not equal,
less than, etc). For the rest of the paper we reference the two
operations as a general shmem_wait().

Typically, the shmem_wait() operations are used in combi-
nation with other communication routines. Applications use
bulk put/get routines for data communication, which are
followed by short put notification updates. The receiver of the
notification uses shmem_wait() to block until it receives the
notification. OSHMEM implements the blocking functionality
as a busy-waiting loop that is polling for the synchronization
value to change; other OpenSHMEM implementations use a
similar approach for implementing shmem_wait(). While such
an implementation of this functionality is optimal in terms of
latency, it generates substantial load on the CPU. Nevertheless,
such a busy-wait workload pattern is not unusual for high-
performance system software libraries, like those that have
been well explored by the ARM software community. To
help in this situation, the ARM ISA defines the Wait-for-

Event (WFE) instruction. WFE suspends execution on the
processor (clock is stopped) and puts the processor in a low-
power mode. The processor resumes its execution if one of
the following events occurs: interrupt, send event, or memory
update for an address that is marked as exclusive. As a result,
the WFE instruction is a perfect fit for an energy efficient
implementation of shmem_wait(). In our implementation, we
mark the synchronization variable as an exclusive and insert
the WFE into the busy-wait loop. The busy-loop checks the
status of the variable and executes the WFE instruction, which
pauses the clock and puts the CPU in an energy saving mode.
On any memory update of the variable, the WFE instruction
resumes normal operation and checks the status of the variable.
This is the first implementation of an OpenSHMEM library
known to us that explicitly leverages the this capability of the
ARM ISA to improve efficiency of the library.

IV. RESULTS

In this section, we evaluate the performance of OSHMEM
and UCX on a testbed ARM v8 based system with an
InfiniBand network interconnect. This platform consists of two
Softiron Overdrive 3000 servers, and each one is powered
by an 8-core AMD Opteron A1100 series processor with 16
GB system memory and Mellanox EDR (100 Gb/s signaling
rate) ConnectX-4 IB/VPI host channel adapter (HCA). The
HCA is connected to PCIe Gen2 x8 system bus, and so the
theoretical bandwidth is constrained to 32 Gb/s speed. The
practical bandwidth that takes into consideration the PCIe
encoding, header, and protocol overheads can be estimated
around 27Gb/s [34]. The machines were running Ubuntu 16.04
(kernel 4.4.0-24), a pre-production version of the Mellanox
OFED 3.3-1.5.0.0, XPMEM master version (bdfcc52), UCX
master version (0558b41), and Open MPI master version
(fed4849).

For the basic performance evaluation of UCP put,
get, and atomic operations we used the capabilities of
ucx_perftest which is distributed as part of the UCX
library. These UCP routines underpin the implementation
of corresponding OpenSHMEM operations and are therefore
important for our study. In ucx_perftest, the UCP put
latency is measured as the total round-trip (“ping-pong”)
time, divided by two. The UCP get latency, put and get
bandwidth, and the time for the atomic memory operations
(AMOs) are measured by averaging the total time to complete
the corresponding UCP operation over many trials divided
by the number of trials. The bandwidth characteristic is
measured using the same micro-benchmark and it is calculated

as
request_size ∗ trials

total_time
.

First, we look at the UCP InfiniBand results which are
summarized in figure 2. Panels ‘a,’ ‘b,’ and ‘c’ show the raw
performance of the latency, message rate, and bandwidth for
various message sizes using both the MLX5 reliable connected
(RC) and the Verbs RC transports implemented in the UCT
layer. For the rest of the paper we will reference these two
transports as MLX5 and Verbs. Panel ‘d’ of figure 2 compares



�

�

�

�

��

��

��

���

���

���

����

� � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
��
��
�
�
�
�
�
�
�
�
��
�
�
�

�����
���

�����������

��������
���������
��������
���������

���

���

���

���

���

���

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
��

���
��
�
�
��
��
�
�
�
�
�
�

�����
���

��������������������

��������
���������

���

����

����

����

����

����

����

� � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
��

�����
���

�����������������

��������
���������

���

�

���

�

���

�

���

�
��
�
�

�
��
�
�
�

�
��
�
�
�

�
��
�
�
�
�

�
��
�
�

�
��
�
�
�

�
��
�
�
�

�
��
�
�
�
�

�
��
��
�
�
�
�
�
�
�

���������
���

����������������������������������

����
�����

Fig. 2. Summary of InfiniBand results for UCP on ARM v8 with InfiniBand. MLX5 demonstrates better put message rates as seen in panel ‘b.’ MLX5
slightly outperforms Verbs in put latency and bandwidth (panels ‘a’ and ‘c’), and atomic operations’ performance shown in panel ‘d.’

the performance of MLX5 and Verbs for several 4-byte and
8-byte OpenSHMEM atomic memory operations (AMOs).
While MLX5 generally outperforms Verbs in all benchmarks,
the message injection rate in this case shows a significant
difference. The MLX5 transport is implemented natively in
UCX on top of the ConnectX-4 hardware abstraction layer,
and this allows UCX to reduce the number instructions in the
communication path as well eliminate some of the memory
barriers. As a result, the MLX5 transport demonstrates a 1.4x
improvement in the injection rate. The hardware as described
at the beginning of section IV is estimated to support 27Gb/s,
and with a single core (2Ghz) we were able to achieve
24.2Gb/s, which is 90% of the practical limit. The substantial
difference in the latency of the AMO add operation can
be attributed to the fact that this is the only non-fetching
atomic operation in the group. It can therefore be completed
immediately as it is posted, while the rest of AMOs have to
wait until the data from remote peer arrives.

In figure 3 we show a summary of the UCP performance
when using the XPMEM shared memory transport imple-
mented in UCT and measured using the ucx_perftest
benchmark. In general, the performance for the latency, mes-

sage rate, and bandwidth of the UCP put and get operations
are fairly symmetric as expected – especially at larger message
sizes. Nevertheless, we observe a substantial difference in
the latency of put and get operations for small message
sizes. In the UCT layer both operations are realized as a
simple memcpy() call, and therefore we expected to see
nearly identical performance. This difference is likely due to
the different communication patterns (ping-pong vs ping-ping)
which are used for measuring put and get latencies.

In addition, we developed a simple OpenSHMEM
put-and-wait ping-pong benchmark for measuring
shmem_wait() efficiency. One Processing Element (PE)
initiates shmem_longlong_put() and then calls a
blocking shmem_wait(), which waits for the remote side
to respond. Another PE executes the same communication
directives in the opposite order. First it calls shmem_wait()
and then responds with shmem_longlong_put(). The
number of executed cycles and instructions are measured using
the Linux perf utility. The shmem_longlong_put()
latency is measured as a half-round trip latency of the
ping-pong communication pattern.

As described in section III-C, we were able to use the



������
�����

����
���

�
�
�
�

��
��
��

���
���
���

����

� � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
��
��
�
�
�
�
�
�
�
�
��
�
�
�

�����
���

�����������

���������
���������

�����

�����

�����

�����

�����

�����

�����

�����

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�

�����
���

����������������

���������
���������

����

����

����

����

�����

�����

�����

�����

� � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
��

�����
���

�������������

���������
���������

����

����

����

����

����

����

����

����

����

���

�
��
�
�

�
��
�
�
�

�
��
�
�
�

�
��
�
�
�
�

�
��
�
�

�
��
�
�
�

�
��
�
�
�

�
��
�
�
�
�

�
��
��
�
�
�
�
�
�
�

���������
���

����������������������������������

Fig. 3. Summary of the XPMEM results for UCP on ARM v8. As expected, the performance for UCP put and get operations are essentially symmetric
for the UCP latency, message injection rate, and bandwidth as shown in panels ‘a,’ ‘b,’ and ‘c,’ respectively. The measured results for common UCP atomic
memory operations are shown in panel ‘d.’

���

�

���

�

���

�������������
������������

�������
������������

�
�
��
�
�
�
�
��
��
��
�
�
�
�
�
�
�
�

���

��������������������������
�����������������

�

�����

�����

�������

�����

�������������
������������

�������
������������

��
�
��
�
�
���
�

�
�
�
�
�
�

���

���������������
�����������������

�

�����

�����

�����

�����

�����

�������

�������

�������

�������������
������������

�������
������������

�
�
�
��

�
�
�
�
�
�

���

���������������
�����������

Fig. 4. The performance and efficiency of the shmem_wait() operations when using the ARM ISA Wait-for-Event instruction compared with the typical
busy-wait loop implementation. Panel ‘a’ indicates that the performance of the payload-carrying put operations are not adversely affected, while panels ‘b’
and ‘c’ indicate increased efficiency of 73% for the instruction count and 35% for the cycle count, which should lead to greater power efficiency of the CPU
as well.



�������

�������

�������

�������

�������

�������

�������

�� �� �� ���

�
���
��
�

�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�
�

���

������������������������

����������������
�����������������

����������������������
�����������������������

Fig. 5. Using OSHMEM with the GUPs benchmark. The optimized MLX5
transport steadily outperforms the Verbs transport on the ConnectX-4 adapter
by about 21% depending on the number of processing elements. The block
distribution outperforms the round-robin due to the availability of the XPMEM
transport for the 8 processing elements on a node.

��

����

����

����

����

����

�� �� �� ���

�
��
�

�
��
�
�
�
�
�
�
�

���

��������������

���������
��������

���������

Fig. 6. The HPCS SSCA benchmark is evaluated using the Verbs and MLX5
transports in UCP with XPMEM enabled for handling shared-memory intra-
node transfers. For this experiment, we show the results for the MLX5 and
Verbs when used with processing elements placed in a round-robin config-
uration. As shown by the dashed line, the XPMEM transport significantly
outperforms when PEs are placed in a block configuration on the same node,
and would otherwise dominate the behavior of the MLX5 and Verbs results.

ARM Wait-for-Event (WFE) instruction to increase the ef-
ficiency of some OSHMEM point-to-point synchronization
operations. Figure 4 shows the effect of using this optimization
in the OpenSHMEM shmem_wait() operation. Overall,
the benchmark demonstrates that the ping-pong latency of
shmem_longlong_put() remains unaffected (panel ‘a’)
even though the thread is no longer actively polling for
progress. We also see increased efficiency by looking at
the total instruction and cycle counts for the WFE-optimized
and unoptimized shmem_wait() implementations, shown in
panels ‘b’ and ‘c,’ respectively. Using the WFE version of
the shmem_wait() routine, we observe 73% reduction in

��

��

��

��

���

���

���

���

���

���

���

�� �� �� ���

�
��
�

�
��
�
�
�
�
�
�
�

���

�������������

���������
��������

Fig. 7. The ISx benchmark is evaluated using the Verbs and MLX5
transports in UCP with XPMEM enabled for handling shared-memory intra-
node transfers. The communication to computation load in this application is
lighter than the others, so the effect of the variously-optimized transports is
minimal.

the number of the executed instructions and 35% reduction
in the number of cycles. This observed increase in efficiency
indicates the potential for lower power consumption of these
operations as well, but with the preliminary status of our
testing platform the measurement tooling is not yet able to
provide detailed enough information to directly measure the
isolated power consumption of specific operations.

To show more general application-oriented results for the
OSHMEM implementation on the ARM v8 InfiniBand plat-
form, we used an OpenSHMEM version of the GUPs bench-
marks, which is based on the MPI version of the benchmark
distributed as part of the High Performance Computing Chal-
lenge (HPCC) [35] benchmark suite. The benchmark measures
system performance in terms of Giga Updates per Second
(GUPs), which are defined by the number of random memory
locations that can be updated in one second. This provides an
idea of peak performance of the system under random memory
access workloads. More specifically, this benchmark measures
how a value is retrieved through a get, a new value stored
with a put, and another value incremented with an atomic
operation at a random memory location. We show results for
the GUPs benchmark in figure 5. As can be seen in the figure,
the MLX5 transport provides a 21% increase in performance
over Verbs for 2–16 OpenSHMEM processing elements (PEs).

For this experiment, we use two different PE placement
strategies to show the possible differences in performance
of the transports that get selected. In a block distribution
of PEs, all PEs in the experiments using 2, 4, or 8 PEs
are placed on the same machine, and when 16 PEs are
used they are distributed across two machines. In the block
distribution scheme, only the XPMEM transport is used for
communication among PEs in the experiments with 2, 4, and
8 PEs, and as a result the block distribution outperforms the
round robin distribution where MLX5 or Verbs are used. It



is important to note that there is variance in XPMEM-MLX5
and XPMEM-Verbs results due to the fact that the Verbs or
MLX5 progress function is invoked, even so xpmem is used.
For the experiments using 16 PEs, MLX5 outperforms Verbs.
This result is not surprising since the benchmark generates
multiple put requests, and previous UCP evaluations [8] have
shown that MLX5 benefits from a higher message rate.

Another application-oriented benchmark is HPCS SSCA.
HPCS SSCA is an implementation of Smith-Waterman local
sequence alignment algorithm [36][37][38]. The communica-
tion part of the algorithm consists of an outer and inner loop.
The inner loop issues many shmem get operations and few
shmem put operations for small data sizes. As a result, the
benchmark is sensitive to small message latency and injection
rates. The performance metric for the benchmark is defined
as a time reported by kernel1 of HPCS SSCA, which is
overall execution time of the kernel including communication
and computational parts. Figure 6 summarizes performance
results for the benchmark, which shows between a 7–30%
improvement when using MLX5 over Verbs corresponding to
previous observations of MLX5 put operations being faster
[8]. When PEs are distributed in a block placement scheme as
described above, the XPMEM shared memory results signif-
icantly outperform within a single node effectively nullifying
the differences between MLX5 and Verbs for this case.

ISx [39][40] benchmark is another representative of applica-
tion focused benchmark from OpenSHMEM community. The
benchmark is a scalable variant of the NAS IS benchmark
[41] that implements distributed integer sort algorithm. ISx
consists of two main parts - local bucket sort algorithm and
all-to-all communication patter that is used for the exchange of
keys. Figure 7 presents performance results for the benchmark.
For the evaluation we used isx.strong, which evaluates
strong scaling properties of the system and the algorithm. The
performance for the benchmarks is measured and an average
execution time of the ISx across all processing elements. From
the performance results we can see that OpenSHMEM using
MLX5 and Verbs UCT transport layers demonstrate nearly
identical execution times. This results aligns well with our
expectation; on a small scale system the local sort algorithm
dominates overall execution time while the pressure on com-
munication resources is relatively modest.

V. CONCLUSION AND FUTURE WORK

This paper documents a step towards enabling ARM v8
architecture support for one-sided communications, using the
OpenSHMEM programming model and the InfiniBand inter-
connect as a demonstrating implementation. In the context of
this work, we ported the UCX framework and XPMEM kernel
module to the ARM v8 architecture and investigated potential
opportunities for ARM-specific optimizations in the OpenSH-
MEM library. It is important to note that this study is based
on pre-production level hardware and software components,
and therefore focused on the enablement of the software stack
and identification of potential opportunities for further opti-
mization. We demonstrated that using a single AMD Opteron

A1100 core the UCP layer reaches 90% of the potential
bandwidth while leveraging the underlying capabilities for the
RDMA network. In addition, we present an optimization for
the shmem_wait() operation, which increased the efficiency
of the operation in terms of instruction and cycle count by 73%
and 35% respectively, without compromising the latency of
the OpenSHMEM communication directives. Using the SSCA,
ISx, and GUPs OpenSHMEM application-focused benchmarks
we demonstrated that the ARM v8 architecture also benefits
from the custom developed MLX5 UCT driver and newly
enabled XPMEM shared memory transport in UCT. To the best
of our knowledge, this is first work demonstrating InfiniBand,
OpenSHMEM, UCX, and XPMEM functionality together on
ARM. In future work, we plan to focus on further opportunities
for energy efficiency and performance optimizations for the
ARM architecture, as well as extending these optimizations
to MPI one-sided and other communication semantics. With
the availability of larger-scale ARM platform installations,
and the extensions presented here, further studies to identify
opportunities for optimizations specific to scaling up will be
of primary interest.

ACKNOWLEDGEMENTS

We would like to acknowledge UCX developers for their
guidance in enabling ARM v8 architecture support in UCX.
Also, we would like to thank Nathan T. Hjelm from Los
Alamos National Laboratory for his help in debugging the
XPMEM kernel module and Alexander Mikheev for his work
on UCX and OSHMEM integration.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel,
and L. Smith, “Introducing OpenSHMEM: SHMEM for the PGAS
community,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, ser. PGAS ’10, New
York, NY, USA, 2010. [Online]. Available: http://doi.acm.org/10.1145/
2020373.2020375

[2] S. W. Poole, O. Hernandez, J. A. Kuehn, G. M. Shipman, A. Curtis,
and K. Feind, “OpenSHMEM - Toward a Unified RMA Model,” in
Encyclopedia of Parallel Computing, 2011, pp. 1379–1391.

[3] S. S. Pophale, “SRC: OpenSHMEM library development.” in ICS,
D. K. Lowenthal, B. R. de Supinski, and S. A. McKee, Eds. ACM,
2011, p. 374. [Online]. Available: http://dblp.uni-trier.de/db/conf/ics/
ics2011.html#Pophale11

[4] D. Bonachea, “GASNet Specification, v1.1,” Berkeley, CA, USA, Tech.
Rep., 2002.

[5] P. Shamis, M. G. Venkata, S. Poole, A. Welch, and T. Curtis,
OpenSHMEM and Related Technologies. Experiences, Implementations,
and Tools: First Workshop, OpenSHMEM 2014, Annapolis, MD,
USA, March 4-6, 2014. Proceedings. Cham: Springer International
Publishing, 2014, ch. Designing a High Performance OpenSHMEM
Implementation Using Universal Common Communication Substrate
as a Communication Middleware, pp. 1–13. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-05215-1_1

[6] P. Shamis, M. G. Venkata, J. A. Kuehn, S. W. Poole, and R. L. Graham,
“Universal Common Communication Substrate (UCCS) Specification.
Version 0.1,” Oak Ridge National Laboratory (ORNL), Tech Report
ORNL/TM-2012/339, 2012.



[7] R. L. Graham, P. Shamis, J. A. Kuehn, and S. W. Poole, “Communication
Middleware Overview,” Oak Ridge National Laboratory (ORNL), Tech
Report ORNL/TM-2012/120, 2012.

[8] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, Y. Shahar,
S. Potluri, D. Rossetti, D. Becker, D. Poole, C. Lamb, S. Kumar,
C. Stunkel, G. Bosilca, and A. Bouteiller, “Ucx: An open source
framework for hpc network apis and beyond,” in 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects, Aug 2015, pp. 40–43.

[9] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004, pp. 97–104.

[10] openshmem.org, “Reference Implementation of the evolving OpenSH-
MEM specification based on GASNet http://www.openshmem.org/,”
https://github.com/openshmem-org/openshmem, 2016.

[11] J. Jose, K. Kandalla, M. Luo, and D. K. Panda, “Supporting Hybrid
MPI and OpenSHMEM over InfiniBand: Design and Performance
Evaluation,” in Proceedings of the 2012 41st International Conference
on Parallel Processing, ser. ICPP ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 219–228. [Online]. Available:
http://dx.doi.org/10.1109/ICPP.2012.55

[12] R. Brightwell, T. Hudson, K. Pedretti, R. Riesen, and K. D. Underwood,
“Portals 3.3 on the Sandia/Cray Red Storm System.”

[13] P. Grun, S. Hefty, S. Sur, D. Goodell, R. D. Russell, H. Pritchard, and
J. M. Squyres, “A brief introduction to the openfabrics interfaces - a new
network api for maximizing high performance application efficiency,” in
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects,
Aug 2015, pp. 34–39.

[14] C. Yoon, V. Aggarwal, V. Hajare, A. D. George, and M. B. III, “GSH-
MEM: A Portable Library for Lightweight, Shared-Memory, Parallel
Programming,” in Partitioned Global Address Space, Galveston, Texas,
2011.

[15] B. C. ho Lam, A. D. George, and H. Lam, “TSHMEM: Shared-
Memory Parallel Computing on Tilera Many-Core Processors,”
in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum, 2013, pp. 325–334,
http://www.odysci.com/article/1010113019802138. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/IPDPSW.2013.154

[16] Mellanox Technologies LTD, “Mellanox ScalableSHMEM:
Support the OpenSHMEM Parallel Programming Lan-
guage over InfiniBand,” http://www.mellanox.com/related-
docs/prod_software/PB_ScalableSHMEM.pdf, Sunnyvale, CA, USA,
2012.

[17] J. Nieplocha and B. Carpenter, “Armci: A portable remote memory copy
libray for ditributed array libraries and compiler run-time systems,” in
Proceedings of the 11 IPPS/SPDP’99 Workshops, UK, 1999.

[18] S. Atchley, D. Dillow, G. Shipman, P. Geoffray, J. M. Squyres,
G. Bosilca, and R. Minnich, “The common communication interface
(cci),” HOTI, 2011.

[19] Qlogic. Qlogic PSM. [Online]. Available: http://qlogic.com/pages/
default.aspx/

[20] Cray Inc., “Using the gni and dmapp apis,” in Cray Software
Document, vol. S-2446-4003, Dec. 2011. [Online]. Available: http:
//docs.cray.com/books/S-2446-4003/S-2446-4003.pdf

[21] S. Kumar, A. R. Mamidala, D. A. Faraj, B. Smith, M. Blocksome,
B. Cernohous, D. Miller, J. Parker, J. Ratterman, P. Heidelberger,
D. Chen, and B. Steinmacher-Burrow, “Pami: A parallel active message
interface for the blue gene/q supercomputer,” in 2012 IEEE 26th In-
ternational Parallel and Distributed Processing Symposium, May 2012,
pp. 763–773.

[22] S. Derradji, T. Palfer-Sollier, J. P. Panziera, A. Poudes, and F. W.
Atos, “The bxi interconnect architecture,” in 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects, Aug 2015, pp. 18–25.

[23] Openfabrics Alliance, “Openfabrics Alliance,” https://openfabrics.org/,
2016.

[24] J. M. Squyres and A. Lumsdaine, “The component architecture of
open MPI: Enabling third-party collective algorithms,” in Proceedings,
18th ACM International Conference on Supercomputing, Workshop on
Component Models and Systems for Grid Applications, V. Getov and
T. Kielmann, Eds. St. Malo, France: Springer, July 2004, pp. 167–185.

[25] “xpmem: Cross-process memory mapping,” https://code.google.com/
archive/p/xpmem/, 2011.

[26] N. Hjelm, “Linux cross-memory attach,” https://github.com/hjelmn/
xpmem, 2016.

[27] J. Squyres, “The “vader” shared memory transport in Open MPI:
Now featureing3 flavors of zero copy!” http://blogs.cisco.com/
performance/the-vader-shared-memory-transport-in-open-mpi-now\
-featuring-3-flavors-of-zero-copy, 2014.

[28] J. Vienne, “Benefits of cross memory attach for mpi libraries on hpc
clusters,” in Proceedings of the 2014 Annual Conference on Extreme
Science and Engineering Discovery Environment, ser. XSEDE ’14.
New York, NY, USA: ACM, 2014, pp. 33:1–33:6. [Online]. Available:
http://doi.acm.org/10.1145/2616498.2616532

[29] B. Goglin and S. Moreaud, “Knem: A generic and scalable
kernel-assisted intra-node MPI communication framework,” Journal of
Parallel and Distributed Computing, vol. 73, no. 2, pp. 176 – 188,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0743731512002316

[30] H. W. Jin, S. Sur, L. Chai, and D. K. Panda, “Limic: support for high-
performance mpi intra-node communication on linux cluster,” in 2005
International Conference on Parallel Processing (ICPP’05), June 2005,
pp. 184–191.

[31] Mellanox Technologies LTD, “Mellanox Messaging(MXM): Message
Accelerations over InfiniBand for MPI and PGAS libraries,”
http://www.mellanox.com/related-docs/prod_software/PB_MXM.pdf,
Sunnyvale, CA, USA, 2012.

[32] openucx.org, “Unified Communication-X Framework,” https://github.
com/openucx/ucx, 2013.

[33] J. M. Squyres and A. Lumsdaine, “The component architecture of
open MPI: Enabling third-party collective algorithms,” in Proceedings,
18th ACM International Conference on Supercomputing, Workshop on
Component Models and Systems for Grid Applications, V. Getov and
T. Kielmann, Eds. St. Malo, France: Springer, July 2004, pp. 167–185.

[34] J. Lawley, “Understanding Performance of PCI Express Systems,”
http://www.xilinx.com/support/documentation/white_papers/wp350.pdf,
2014.

[35] P. Luszczek and J. Dongarra, “Analysis of various scalar, vector, and
parallel implementations of randomaccess,” Innovative Computing Lab-
oratory (ICL) Technical Report, ICL-UT-10-03, June 2010.

[36] D. Bader, K. Madduri, J. Gilbert, V. Shah, J. Kepner, T. Meuse, and
A. Krishnamurthy, “Designing scalable synthetic compact applications
for benchmarking high productivity computing systems,” Cyberinfras-
tructure Technology Watch, vol. 2, pp. 1–10, 2006.

[37] M. Baker, F. Aderholdt, M. G. Venkata, and P. Shamis, “Openshmem-
ucx: Evaluation of ucx for implementing openshmem programming
model,” in Workshop on OpenSHMEM and Related Technologies.
Springer, 2016, pp. 114–130.

[38] M. Baker, “HPCS benchmark challenge SSCA1 for OpenSHMEM ,”
https://gitlab.com/MattBBaker/ssca1, 2016.

[39] U. Hanebutte and J. Hemstad, “Isx: A scalable integer sort for co-design
in the exascale era,” in Partitioned Global Address Space Programming
Models (PGAS), 2015 9th International Conference on. IEEE, 2015,
pp. 102–104.

[40] ——, “ISx is Scalable Integer Sort Application,” https://github.com/
ParRes/ISx, 2015.

[41] nasa.gov, “NAS Parallel Benchmarks,” https://www.nas.nasa.gov/
publications/npb.html, 1994.


